An Analysis of Linear Models, Linear Value-Function Approximation, and Feature Selection for Reinforcement Learning

author: Ronald Parr, Department of Computer Science, Duke University
published: Aug. 12, 2008,   recorded: July 2008,   views: 4624
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We show that linear value function approximation is equivalent to a form of linear model approximation. We derive a relationship between the model approximation error and the Bellman error, and show how this relationship can guide feature selection for model improvement and/or value function improvement. We also show how these results give insight into the behavior of existing feature-selection algorithms.

See Also:

Download slides icon Download slides: icml08_parr_alm_01.ppt (796.0┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: