Cost-Sensitive Multi-class Classification from Probability Estimates

author: Deirdre O'Brien, Google, Inc.
published: Aug. 29, 2008,   recorded: July 2008,   views: 567
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

For two-class classification, it is common to classify by setting a threshold on class probability estimates, where the threshold is determined by {ROC} curve analysis. An analog for multi-class classification is learning a new class partitioning of the multiclass probability simplex to minimize empirical misclassification costs. We analyze the interplay between systematic errors in the class probability estimates and cost matrices for multi-class classification. We explore the effect on the class partitioning of five different transformations of the cost matrix. Experiments on benchmark datasets with naive Bayes and quadratic discriminant analysis show the effectiveness of learning a new partition matrix compared to previously proposed methods.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: