Nonextensive Entropic Kernels

author: André F. T. Martins, Language Technologies Institute, Carnegie Mellon University
published: July 28, 2008,   recorded: July 2008,   views: 3531


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Positive definite kernels on probability measures have been recently applied in structured data classification problems. Some of these kernels are related to classic information theoretic quantities, such as mutual information and the Jensen-Shannon divergence. Meanwhile, driven by recent advances in Tsallis statistics, nonextensive generalizations of Shannon’s information theory have been proposed. This paper bridges these two trends. We introduce the Jensen-Tsallis q-difference, a generalization of the Jensen-Shannon divergence. We then define a new family of nonextensive mutual information kernels, which allow weights to be assigned to their arguments, and which includes the Boolean, Jensen-Shannon, and linear kernels as particular cases. We illustrate the performance of these kernels on text categorization tasks.

See Also:

Download slides icon Download slides: icml08_martins_nek_01.pdf (458.5 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: