Transfer of Samples in Batch Reinforcement Learning

author: Alessandro Lazaric, Politecnico di Milano
published: Aug. 6, 2008,   recorded: July 2008,   views: 3546


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The main objective of transfer learning is to reduce the complexity of learning the solution of a target task by effectively reusing the knowledge retained from solving one or more source tasks. In this paper, we introduce a novel algorithm that transfers samples (i.e., experience tuples ) from source to target tasks. Under the assumption that tasks defined on the same environment often have similar transition models and reward functions, we propose a method to select samples from the source tasks that are mostly similar to the target task, and, then, to use them as input for batch reinforcement learning algorithms. As a result, the number of samples that the agent needs to collect from the target task to learn its solution is reduced. We empirically show that, following the proposed approach, the transfer of samples is effective in reducing the learning complexity, even when the source tasks are significantly different from the target task.

See Also:

Download slides icon Download slides: icml08_lazaric_tsb_01.pdf (1.5┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: