A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning
published: July 30, 2008, recorded: July 2008, views: 13606
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
We describe a single convolutional neural network architecture that given a sentence, outputs a host of language processing predictions: part-of-speech tags, chunks, named entity tags, semantic roles, semantically similar words and the likelihood that the sentence makes sense (grammatically and semantically) using a language model. The entire network is trained jointly on all these tasks using weight-sharing, an instance of multitask learning. All the tasks use labeled data except the language model which is learnt from unlabeled text and represents a novel way of performing semi-supervised learning for the shared tasks. We show how both multitask learning and semi-supervised learning improve the generalization of the shared tasks, resulting in a learnt model with state-of-the-art performance.
See Also:
Download slides:
icml08_collobert_uanl_01.pdf (899.5 KB)
Download subtitles: TT/XML,
RT,
SRT
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Reviews and comments:
very nice talk and helpful to understand the paper, but bad quality of sound and visual
Write your own review or comment: