Fast Support Vector Machine Training and Classification on Graphics Processors

author: Bryan Catanzaro, Department of Electrical Engineering and Computer Sciences, UC Berkeley
published: Aug. 5, 2008,   recorded: July 2008,   views: 1650


Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Recent developments in programmable, highly parallel Graphics Processing Units (GPUs) have enabled high performance implementations of machine learning algorithms. We describe a solver for Support Vector Machine training, using Platt's Sequential Minimal Optimization algorithm and an adaptive first and second order working set selection heuristic, which achieves speedups of 9-35x over LIBSVM running on a traditional processor. We also present a GPU-based system for SVM classification which achieves speedups of 81-138x over LibSVM (5-24x over our own CPU-based SVM classifier).

See Also:

Download slides icon Download slides: icml08_catanzaro_fsvm_01.pptx (2.1┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: