The Asymptotics of Semi-Supervised Learning in Discriminative Probabilistic Models

author: Olivier Cappé, +LTCI, TELECOM ParisTech and CNRS
published: Aug. 4, 2008,   recorded: July 2008,   views: 113
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Semi-supervised learning aims at taking advantage of unlabeled data to improve the efficiency of supervised learning procedures. For discriminative models however, this is a challenging task. In this contribution, we introduce an original methodology for using unlabeled data through the design of a simple semi-supervised objective function. We prove that the corresponding semi-supervised estimator is asymptotically optimal. The practical consequences of this result are discussed for the case of the logistic regression model.

See Also:

Download slides icon Download slides: icml08_cappe_ass_01.pdf (242.1 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: