Learning from Interpretations: A Rooted Kernel for Ordered Hypergraphs

author: Gabriel Wachman, Department of Computer Science, Tufts University
published: June 23, 2007,   recorded: June 2007,   views: 139
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The paper presents a kernel for learning from ordered hypergraphs, a formalization that captures relational data as used in Inductive Logic Programming (ILP). The kernel generalizes previous approaches to graph kernels in calculating similarity based on walks in the hypergraph. Experiments on challenging chemical datasets demonstrate that the kernel outperforms existing ILP methods, and is competitive with state-of-the-art graph kernels. The experiments also demonstrate that the encoding of graph data can affect performance dramatically, a fact that can be useful beyond kernel methods.

See Also:

Download slides icon Download slides: icml07_corvallis_wachman_gabriel.pdf (121.6┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: