A Transductive Framework of Distance Metric Learning by Spectral Dimensionality Reduction

author: Fuxin Li, Institute of Automation, Chinese Academy of Sciences
published: June 23, 2007,   recorded: June 2007,   views: 466
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Distance metric learning and nonlinear dimensionality reduction are two interesting and active topics in recent years. However, the connection between them is not thoroughly studied yet. In this paper, a transductive framework of distance metric learning is proposed and its close connection with many nonlinear spectral dimensionality reduction methods is elaborated. Furthermore, we prove a representer theorem for our framework, linking it with function estimation in an RKHS, and making it possible for generalization to unseen test samples. In our framework, it suffices to solve a sparse eigenvalue problem, thus datasets with 105 samples can be handled. Finally, experiment results on synthetic data, several UCI databases and the MNIST handwritten digit database are shown.

See Also:

Download slides icon Download slides: icml07_li_atfd.ppt (620.0┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: