Meta-QSAR and Multi-Task QSAR Learning

author: Larisa Soldatova, Goldsmiths College, University of London
published: June 28, 2019,   recorded: May 2019,   views: 118


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Larisa will present the results of the meta-QSAR project funded by EPSRC (Engineering and Physical Sciences Research Council UK) (‘learning to learn how to design drugs’ EP/K030469/1, EP/K030582/1). Although almost every type of machine learning method has been applied to QSAR learning there is no agreed single best way of learning QSARs. The project team of researchers carried out the most comprehensive ever comparison of machine learning methods for QSAR learning: 18 regression methods, 6 molecular representations, applied to more than 2,700 QSAR problems. They then investigated the utility of algorithm selection for QSAR problems. They found that such a meta-learning approach outperformed the best individual QSAR learning method (i.e. random forests using a molecular fingerprint representation) by up to 13%, on average. It provides evidence for the general effectiveness of meta-learning over base-learning. The meta-QSAR project team also employed multi-task learning (MTL) to exploit commonalities in drug targets and assays. They analysed over a thousands of assay provided by ChEMBL. They carried out feature-based and instance-based MTL to predict drug activities. In addition, they introduced a natural metric of evolutionary distance between drug targets as a measure of tasks relatedness. The results of MTL studies were compared with the results of a single task learning, a random forest as the best performing QSAR learner. The results are: instance-based MTL significantly outperformed both, feature-based MTL and the base learner. MTL was significantly improved by incorporating the evolutionary distance between targets. The results of the meta-QSAR project have been made publicly available on OpenML platform.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 sprinkler system repair, October 9, 2019 at 5:32 a.m.:

Cool. can I share this post to my blog? I'd appreciate it. Cheers!

Comment2 fredluis, October 9, 2019 at 5:33 a.m.:

Cool. can I share this post to my blog? I'd appreciate it. Cheers! https://www.sunnysprinklerrepairorlan...

Comment3 jik, November 18, 2019 at 4:28 p.m.:

<a href="">Google</a>

Comment4 Meg Wilson, November 26, 2019 at 9:14 p.m.:

Another great article!

Comment5 Danice, November 26, 2019 at 9:21 p.m.:

I love this blog. Keep it up!

Comment6 Thomas Clark, February 20, 2020 at 5:10 p.m.:

For someone to say to [url=]check me here[/url] for this blog is someone who understands the necessity of Research in the field of Physical Sciences.

Write your own review or comment:

make sure you have javascript enabled or clear this field: