Learning Query and Image Similarities With Ranking Canonical Correlation Analysis

author: Ting Yao, Microsoft Research Asia, Microsoft Research
published: Feb. 10, 2016,   recorded: December 2015,   views: 1780
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

One of the fundamental problems in image search is to learn the ranking functions, i.e., similarity between the query and image. The research on this topic has evolved through two paradigms: feature-based vector model and image ranker learning. The former relies on the image surrounding texts, while the latter learns a ranker based on human labeled query-image pairs. Each of the paradigms has its own limitation. The vector model is sensitive to the quality of text descriptions, and the learning paradigm is difficult to be scaled up as human labeling is always too expensive to obtain. We demonstrate in this paper that the above two limitations can be well mitigated by jointly exploring subspace learning and the use of click-through data. Specifically, we propose a novel Ranking Canonical Correlation Analysis (RCCA) for learning query and image similarities. RCCA initially finds a common subspace between query and image views by maximizing their correlations, and further simultaneously learns a bilinear query-image similarity function and adjusts the subspace to preserve the preference relations implicit in the click-through data. Once the subspace is finalized, query-image similarity can be computed by the bilinear similarity function on their mappings in this subspace. On a large-scale click-based image dataset with 11.7 million queries and one million images, RCCA is shown to be powerful for image search with superior performance over several state-of-the-art methods on both keyword-based and query-by-example tasks.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: