Partial Person Re-Identification

author: Tao Xiang, School of Electronic Engineering and Computer Science, Queen Mary, University of London
published: Feb. 10, 2016,   recorded: December 2015,   views: 1989
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We address a new partial person re-identification (reid) problem, where only a partial observation of a person is available for matching across different non-overlapping camera views. This differs significantly from the conventional person re-id setting where it is assumed that the full body of a person is detected and aligned. To solve this more challenging and realistic re-id problem without the implicit assumption of manual body-parts alignment, we propose a matching framework consisting of a local patch-level matching model based on a novel sparse representation classification formulation with explicit patch ambiguity modelling, and 2) a global part-based matching model providing complementary spatial layout information. Our framework is evaluated on a new partial person re-id dataset as well as two existing datasets modified to include partial person images. The results show that the proposed method outperforms significantly existing re-id methods as well as other partial visual matching methods.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: