Learning Discriminative Reconstructions for Unsupervised Outlier Removal

author: Yan Xia, University of Science and Technology of China
published: Feb. 10, 2016,   recorded: December 2015,   views: 2386
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We study the problem of automatically removing outliers from noisy data, with application for removing outlier images from an image collection. We address this problem by utilizing the reconstruction errors of an autoencoder. We observe that when data are reconstructed from low-dimensional representations, the inliers and the outliers can be well separated according to their reconstruction errors. Based on this basic observation, we gradually inject discriminative information in the learning process of autoencoder to make the inliers and the outliers more separable. Experiments on a variety of image datasets validate our approach.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: