Semantic Component Analysis

author: Calvin Murdock, Computer Science Department, Carnegie Mellon University
published: Feb. 10, 2016,   recorded: December 2015,   views: 48
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Unsupervised and weakly-supervised visual learning in large image collections are critical in order to avoid the time-consuming and error-prone process of manual labeling. Standard approaches rely on methods like multiple-instance learning or graphical models, which can be computationally intensive and sensitive to initialization. On the other hand, simpler component analysis or clustering methods usually cannot achieve meaningful invariances or semantic interpretability. To address the issues of previous work, we present a simple but effective method called Semantic Component Analysis (SCA), which provides a decomposition of images into semantic components. Unsupervised SCA decomposes additive image representations into spatially-meaningful visual components that naturally correspond to object categories. Using an overcomplete representation that allows for rich instance-level constraints and spatial priors, SCA gives improved results and more interpretable components in comparison to traditional matrix factorization techniques. If weakly-supervised information is available in the form of image-level tags, SCA factorizes a set of images into semantic groups of superpixels. We also provide qualitative connections to traditional methods for component analysis (e.g.Grassmann av-erages, PCA, and NMF). The effectiveness of our approach is validated through synthetic data and on the MSRC2 and Sift Flow datasets, demonstrating competitive results in unsupervised and weakly-supervised semantic segmentation.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: