Learning Image Representations Tied to Ego-Motion

author: Dinesh Jayaraman, Department of Computer Science, University of Texas at Austin
published: Feb. 10, 2016,   recorded: December 2015,   views: 136
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Understanding how images of objects and scenes behave in response to specific ego-motions is a crucial aspect of proper visual development, yet existing visual learning methods are conspicuously disconnected from the physical source of their images. We propose to exploit proprioceptive motor signals to provide unsupervised regularization in convolutional neural networks to learn visual representations from egocentric video. Specifically, we enforce that our learned features exhibit equivariance i.e. they respond predictably to transformations associated with distinct ego-motions. With three datasets, we show that our unsupervised feature learning approach significantly outperforms previous approaches on visual recognition and next-best-view prediction tasks. In the most challenging test, we show that features learned from video captured on an autonomous driving platform improve large-scale scene recognition in static images from a disjoint domain.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: