Graph-based Methods for Retinal Mosaicing and Vascular Characterization

author: M. Elena Martinez-Perez, National University of Mexico
published: July 4, 2007,   recorded: June 2007,   views: 6259


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In this paper, we propose a highly robust point-matching method (Graph Transformation Matching - GTM) relying on finding the consensus graph emerging from putative matches. Such method is a two- phased one in the sense that after finding the consensus graph it tries to complete it as much as possible. We successfully apply GTM to image registration in the context of finding mosaics from retinal images. Feature points are obtained after properly segmenting such images. In addition, we also introduce a novel topological descriptor for quantifying disease by characterizing the arterial/venular trees. Such descriptor relies on diffusion kernels on graphs. Our experiments have showed only statistical signifficance for the case of arterial trees, which is consistent with previous findings.

See Also:

Download slides icon Download slides: gbr07_perez_gbrmr_01.ppt (15.1┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: