Approximating TSP Solution by MST based Graph Pyramid

author: Yll Haxhimusa, Vienna University of Technology
published: July 12, 2007,   recorded: June 2007,   views: 7979


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The traveling salesperson problem (TSP) is difficult to solve for input instances with large number of cities. Instead of finding the solution of an input with a large number of cities, the problem is approximated into a simpler form containing smaller number of cities, which is then solved optimally. Graph pyramid solution strategies, in a bottom-up manner using Boruvka’s minimum spanning tree, convert a 2D Euclidean TSP problem with a large number of cities into successively smaller problems (graphs) with similar layout and solution, until the number of cities is small enough to seek the optimal solution. Expanding this tour solution in a top-down manner to the lower levels of the pyramid approximates the solution. The new model has an adaptive spatial structure and it simulates visual acuity and visual attention. The model solves the TSP problem sequentially, by moving attention from city to city with the same quality as humans. Graph pyramid data structures and processing strategies are a plausible model for finding near-optimal solutions for computationally hard pattern recognition problems.

See Also:

Download slides icon Download slides: gbr07_haxhimusa_ats_01.pdf (3.5 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: