Image Retrieval via Kullback Divergence of Patches of Wavelets Coefficients in the k-NN Framework

author: Michel Barlaud, Polytech'Nice, Université de Nice-Sophia Antipolis
published: Dec. 5, 2008,   recorded: November 2008,   views: 4975


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


This talk presents a framework to define an objective measure of the similarity (or dissimilarity) between two images for image processing. The problem is twofold:

  • define a set of features that capture the information contained in the image relevant for the given task and
  • define a similarity measure in this feature space.

In this paper, we propose a feature space as well as a statistical measure on this space. Our feature space is based on a global description of the image in a multiscale transformed domain. After decomposition into a Laplacian pyramid, the coefficients are arranged in intrascale/ interscale/interchannel patches which reflect the dependencies of neighboring coefficients in presence of specific structures or textures. At each scale, the probability density function (pdf) of these patches is used as a description of the relevant information. Because of the sparsity of the multiscale transform, the most significant patches, called Sparse Multiscale Patches (SMP), describe efficiently these pdfs.

We propose a statistical measure (the Kullback-Leibler divergence) based on the comparison of these probability density function. Interestingly, this measure is estimated via the nonparametric, k-th nearest neighbor framework without explicitly building the pdfs. This framework is applied to a query-by-example image retrieval method. Experiments on two publicly available databases showed the potential of our SMP approach for this task. In particular, it performed comparably to a SIFT-based retrieval method and two versions of a fuzzy segmentation-based method (the UFM and CLUE methods), and it exhibited some robustness to different geometric and radiometric deformations of the images.

See Also:

Download slides icon Download slides: etvc08_barlaud_irvkd_01.pdf (7.0¬†MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 Entenschnabel, August 2, 2013 at 8:13 p.m.:

I genuinely don't understand why this person was chosen to present. Speaking is obviously not one of his strong skills. Terrible presentation.

Comment2 Damien, March 15, 2014 at 12:28 p.m.:

Is this a joke ? At least it's a great counter-example for teaching someone how to give a good presentation.

Write your own review or comment:

make sure you have javascript enabled or clear this field: