Intelligent clients for replicated Triple Pattern Fragments

author: Thomas Minier, University of Nantes
published: July 10, 2018,   recorded: June 2018,   views: 3
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Following the Triple Pattern Fragments (TPF) approach, intelligent clients are able to improve the availability of the Linked Data. However, data availability is still limited by the availability of TPF servers. Although some existing TPF servers belonging to different organizations already replicate the same datasets, existing intelligent clients are not able to take advantage of replicated data to provide fault tolerance and load-balancing. In this paper, we propose Ulysses, an intelligent TPF client that takes advantage of replicated datasets to provide fault tolerance and load-balancing. By reducing the load on a server, Ulysses improves the overall Linked Data availability and reduces data hosting cost for organizations. Ulysses relies on an adaptive client-side load-balancer and a cost-model to distribute the load among heterogeneous replicated TPF servers. Experimentations demonstrate that Ulysses reduces the load of TPF servers, tolerates failures and improves queries execution time in case of heavy loads on servers.

See Also:

Download slides icon Download slides: eswc2018_minier_triple_pattern_01.pdf (1.5┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: