Crowdsourced Affinity: A Matter of Fact or Experience

author: Chun Lu, Sépage
published: July 10, 2017,   recorded: May 2017,   views: 0
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

User-entity affinity is an essential component of many user-centric information systems such as online advertising, exploratory search, recommender system etc. The affinity is often assessed by analysing the interactions between users and entities within a data space. Among different affinity assessment techniques, content-based ones hypothesize that users have higher affinity with entities similar to the ones with which they had positive interactions in the past. Knowledge graph and folksonomy are respectively the milestones of Semantic Web and Social Web. Despite their shared crowdsourcing trait (not necessarily all knowledge graphs but some major large-scale ones), the encoded data are different in nature and structure. Knowledge graph encodes factual data with a formal ontology. Folksonomy encodes experience data with a loose structure. Many efforts have been made to make sense of folksonomy and to structure the community knowledge inside. Both data spaces allow to compute similarity between entities which can thereafter be used to calculate user-entity affinity. In this paper, we are interested in observing their comparative performance in the affinity assessment task. To this end, we carried out a first experiment within a travel destination recommendation scenario on a gold standard dataset. Our main findings are that knowledge graph helps to assess more accurately the affinity but folksonomy helps to increase the diversity and the novelty. This interesting complementarity motivated us to develop a semantic affinity framework to harvest the benefits of both data spaces. A second experiment with real users showed the utility of the proposed framework and confirmed our findings.

See Also:

Download slides icon Download slides: eswc2017_lu_crowdsourced_affinity_01.pdf (10.1 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: