Embedding Mapping Approaches for Tensor Factorization and Knowledge Graph Modelling

author: Yinchong Yang, Department of Computer Science, Ludwig-Maximilians Universität
published: July 28, 2016,   recorded: June 2016,   views: 1189


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Latent embedding models are the basis of state-of-the art statistical solutions for modelling Knowledge Graphs and Recommender Systems. However, to be able to perform predictions for new entities and relation types, such models have to be retrained completely to derive the new latent embeddings. This could be a potential limitation when fast predictions for new entities and relation types are required. In this paper we propose approaches that can map new entities and new relation types into the existing latent embedding space without the need for retraining. Our proposed models are based on the observable - even incomplete - features of a new entity, e.g. a subset of observed links to other known entities. We show that these mapping approaches are efficient and are applicable to a wide variety of existing factorization models, including nonlinear models. We report performance results on multiple real-world datasets and evaluate the performances from different aspects.

See Also:

Download slides icon Download slides: eswc2016_yang_graph_modelling_01.pdf (548.7¬†KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: