Semantic Topic Compass - Classification based on Unsupervised Feature Ambiguity Gradation

author: Hassan Saif, Knowledge Media Institute (KMI), Open University (OU)
published: July 28, 2016,   recorded: June 2016,   views: 4
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Characterising social media topics often requires new features to be continuously taken into account, and thus increasing the need for classifier retraining. One challenging aspect is the emergence of ambiguous features, which can affect classification performance. In this paper we investigate the impact of the use of ambiguous features in a topic classification task, and introduce the Semantic Topic Compass (STC) framework, which characterises ambiguity in a topics feature space. STC makes use of topic priors derived from structured knowledge sources to facilitate the semantic feature grading of a topic. Our findings demonstrate the proposed framework offers competitive boosts in performance across all datasets.

See Also:

Download slides icon Download slides: eswc2016_saif_topic_compass_01.pdf (1.5┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: