The Lazy Traveling Salesman - Memory Management for Large - Scale Link Discovery

author: Axel-Cyrille Ngonga Ngomo, University of Leipzig
published: July 28, 2016,   recorded: May 2016,   views: 1390


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Links between knowledge bases build the backbone of the Linked Data Web. In previous works, several time-efficient algorithms have been developed for computing links between knowledge bases. Most of these approaches rely on comparing resource properties based on similarity or distance functions as well as combinations thereof. However, these approaches pay little attention to the fact that very large datasets cannot be held in the main memory of most computing devices. In this paper, we present a generic memory management for Link Discovery. We show that the problem at hand is a variation of the traveling salesman problem and is thus NP-complete. We thus provide efficient graph-based algorithms that allow scheduling link discovery tasks efficiently. Our evaluation on real data shows that our approach allows computing links between large amounts of resources efficiently.

See Also:

Download slides icon Download slides: eswc2016_ngonga_ngomo_link_discovery_01.pdf (2.3┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: