Learning to Classify Spatiotextual Entities in Maps

author: Giorgos Giannopoulos, National Technical University of Athens
published: July 28, 2016,   recorded: June 2016,   views: 8
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In this paper, we present an approach for automatically recommending categories for spatiotextual entities, based on already existing annotated entities. Our goal is to facilitate the annotation process in crowdsourcing map initiatives such as OpenStreetMap, so that more accurate annotations are produced for the newly created spatial entities, while at the same time increasing the reuse of already existing tags. We define and construct a set of training features to represent the attributes of the spatiotextual entities and to capture their relation with the categories they are annotated with. These features include spatial, textual and semantic properties of the entities. We evaluate four different approaches, namely SVM, kNN, clustering+SVM and clustering+kNN, on several combinations of the defined training features and we examine which configurations of the algorithms achieve the best results. The presented work is deployed in OSMRec, a plugin for the JOSM tool that is commonly used for editing content in OpenStreetMap.

See Also:

Download slides icon Download slides: eswc2016_giannopoulus_enteties_maps_01.pdf (1.4┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: