Distributed Keyword Search over RDF via MapReduce

author: Antonio Maccioni, Roma Tre University
published: June 26, 2014,   recorded: May 2014,   views: 1841
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Non expert users need support to access linked data available on the Web. To this aim, keyword-based search is considered an essential feature of database systems. The distributed nature of the Semantic Web demands query processing techniques to evolve towards a scenario where data is scattered on distributed data stores. Existing approaches to keyword search cannot guarantee scalability in a distributed environment, because, at runtime, they are unaware of the location of the relevant data to the query and thus, they cannot optimize join tasks. In this paper, we illustrate a novel distributed approach to keyword search over RDF data that exploits the MapReduce paradigm by switching the problem from graph-parallel to data-parallel processing. Moreover, our frame-work is able to consider ranking during the building phase to return directly the best (top-k) answers in the first (k) generated results, reducing greatly the overall computational load and complexity. Finally, a comprehensive evaluation demonstrates that our approach exhibits very good efficiency guaranteeing high level of accuracy, especially with respect to state-of-the-art competitors.

See Also:

Download slides icon Download slides: eswc2014_maccioni_keyword_search_01.pdf (30.6┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: