Predicting Discussions on the Social Semantic Web

introducer: Denny Vrandečić, Institute of Applied Informatics and Formal Description Methods (AIFB), Karlsruhe Institute of Technology (KIT)
author: Matthew Rowe, School of Computing and Communications, Lancaster University
published: July 7, 2011,   recorded: June 2011,   views: 94
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Social Web platforms are quickly becoming the natural place for people to engage in discussing current events, topics, and policies. Analysing such discussions is of high value to analysts who are interested in assessing up-to-the-minute public opinion, consensus, and trends. However, we have a limited understanding of how content and user features can influence the amount of response that posts (e.g., Twitter messages) receive, and how this can impact the growth of discussion threads. Understanding these dynamics can help users to issue better posts, and enable analysts to make timely predictions on which discussion threads will evolve into active ones and which are likely to wither too quickly. In this paper we present an approach for predicting discussions on the Social Web, by (a) identifying seed posts, then (b) making predictions on the level of discussion that such posts will generate. We explore the use of post-content and user features and their subsequent effects on predictions. Our experiments produced an optimum F1 score of 0.848 for identifying seed posts, and an average measure of 0.673 for Normalised Discounted Cumulative Gain when predicting discussion levels.

See Also:

Download slides icon Download slides: eswc2011_rowe_predicting_01.pdf (1.4 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: