Machine Learning for Robotics

author: Pieter Abbeel, Department of Electrical Engineering and Computer Sciences, UC Berkeley
published: Oct. 29, 2012,   recorded: September 2012,   views: 14436


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Robots are typically far less capable in autonomous mode than in tele-operated mode. The few exceptions tend to stem from long days (and more often weeks, or even years) of expert engineering for a specific robot and its operating environment. Current control methodology is quite slow and labor intensive. I believe advances in machine learning have the potential to revolutionize robotics. In this talk, I will present new machine learning techniques we have developed that are tailored to robotics. I will describe in depth “Apprenticeship learning,” a new approach to high-performance robot control based on learning for control from ensembles of expert human demonstrations. Our initial work in apprenticeship learning has enabled the most advanced helicopter aerobatics to-date, including maneuvers such as chaos, tic-tocs, and auto-rotation landings which only exceptional expert human pilots can fly. Our most recent work in apprenticeship learning is providing traction on learning to perform challenging robotic manipulation tasks, such as knot-tying. I will also briefly highlight three other machine learning for robotics developments: Inverse reinforcement learning and its application to quadruped locomotion, Safe exploration in reinforcement learning which enables robots to learn on their own, and Learning for perception with application to robotic laundry.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: