Larger Residuals Less Work: Active Document Scheduling for Latent Dirichlet Allocation

produced by: Data & Web Mining Lab
author: Mirwaes Wahabzada, Fraunhofer IAIS
published: Nov. 30, 2011,   recorded: September 2011,   views: 3008
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Recently, there have been considerable advances in fast inference for latent Dirichlet allocation (LDA). In particular, stochastic optimization of the variational Bayes (VB) objective function with a natural gradient step was proved to converge and able to process massive document collections. To reduce noise in the gradient estimation, it considers multiple documents chosen uniformly at random. While it is widely recognized that the scheduling of documents in stochastic optimization may have significant consequences, this issue remains largely unexplored. In this work, we address this issue. Specifically, we propose residual LDA, a novel, easy-to-implement, LDA approach that schedules documents in an informed way. Intuitively, in each iteration, residual LDA actively selects documents that exert a disproportionately large influence on the current residual to compute the next update. On several real-world datasets, including 3M articles from Wikipedia, we demonstrate that residual LDA can handily analyze massive document collections and find topic models as good or better than those found with batch VB and randomly scheduled VB, and significantly faster.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: