Multi-Label Ensemble Learning

produced by: Data & Web Mining Lab
author: Wenbin Tang, Department of Computer Science and Technology, Tsinghua University
published: Nov. 30, 2011,   recorded: September 2011,   views: 3354


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Multi-label learning aims at predicting potentially multiple labels for a given instance. Conventional multi-label learning approaches focus on exploiting the label correlations to improve the accuracy of the learner by building an individual multi-label learner or a combined learner based upon a group of single-label learners. However, the generalization ability of such individual learner can be weak. It is well known that ensemble learning can effectively improve the generalization ability of learning systems by constructing multiple base learners and the performance of an ensemble is related to the both accuracy and diversity of base learners. In this paper, we study the problem of multilabel ensemble learning. Specifically, we aim at improving the generalization ability of multi-label learning systems by constructing a group of multilabel base learners which are both accurate and diverse. We propose a novel solution, called EnML, to effectively augment the accuracy as well as the diversity of multi-label base learners. In detail, we design two objective functions to evaluate the accuracy and diversity of multilabel base learners, respectively, and EnML simultaneously optimizes these two objectives with an evolutionary multi-objective optimization method. Experiments on real-world multi-label learning tasks validate the effectiveness of our approach against other well-established methods.

See Also:

Download slides icon Download slides: ecmlpkdd2011_tang_multilabel_01.pdf (469.6┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: