Abductive Plan Recognition by Extending Bayesian Logic Programs

produced by: Data & Web Mining Lab
author: Sindhu Raghavan, Department of Computer Science, University of Texas at Austin
published: Nov. 30, 2011,   recorded: September 2011,   views: 2820
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Plan recognition is the task of predicting an agent’s top-level plans based on its observed actions. It is an abductive reasoning task that involves inferring cause from effect. Most existing approaches to plan recognition use either first-order logic or probabilistic graphical models. While the former cannot handle uncertainty, the latter cannot handle structured representations. In order to overcome these limitations, we develop an approach to plan recognition using Bayesian Logic Programs (BLPs), which combine first-order logic and Bayesian networks. Since BLPs employ logical deduction to construct the networks, they cannot be used effectively for plan recognition. Therefore, we extend BLPs to use logical abduction to construct Bayesian networks and call the resulting model Bayesian Abductive Logic Programs (BALPs). We learn the parameters in BALPs using the Expectation Maximization algorithm adapted for BLPs. Finally, we present an experimental evaluation of BALPs on three benchmark data sets and compare its performance with the state-of-the-art for plan recognition.

See Also:

Download slides icon Download slides: ecmlpkdd2011_raghavan_abductive_01.pdf (661.1 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: