Aggregating Independent and Dependent Models to Learn Multi-label Classifiers

produced by: Data & Web Mining Lab
author: José Ramón Quevedo, Artificial Intelligence Center, University of Oviedo at Gijón
published: Nov. 30, 2011,   recorded: September 2011,   views: 3541
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The aim of multi-label classification is to automatically obtain models able to tag objects with the labels that better describe them. Despite it could seem like any other classification task, it is widely known that exploiting the presence of certain correlations between labels helps to improve the classification performance. In other words, object descriptions are usually not enough to induce good models, also label information must be taken into account. This paper presents an aggregated approach that combines two groups of classifiers, one assuming independence between labels, and the other considering fully conditional dependence among them. The framework proposed here can be applied not only for multi-label classification, but also in multi-label ranking tasks. Experiments carried out over several datasets endorse the superiority of our approach with regard to other methods in terms of some evaluation measures, keeping competitiveness in terms of others.

See Also:

Download slides icon Download slides: ecmlpkdd2011_quevedo_classifiers_01.pdf (2.4 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: