Frequency-aware Truncated methods for Sparse Online Learning

produced by: Data & Web Mining Lab
author: Hidekazu Oiwa, Graduate School of Information Science and Technology, University of Tokyo
published: Nov. 29, 2011,   recorded: September 2011,   views: 82
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Online supervised learning with L1-regularization has gained attention recently because it generally requires less computational time and a smaller space of complexity than batch-type learning methods. However, a simple L1-regularization method used in an online setting has the side effect that rare features tend to be truncated more than necessary. In fact, feature frequency is highly skewed in many applications. We developed a new family of L1-regularization methods based on the previous updates for loss minimization in linear online learning settings. Our methods can identify and retain low-frequency occurrence but informative features at the same computational cost and convergence rate as previous works. Moreover, we combined our methods with a cumulative penalty model to derive more robust models over noisy data. We applied our methods to several datasets and empirically evaluated the performance of our algorithms. Experimental results showed that our frequency-aware truncated models improved the prediction accuracy.

See Also:

Download slides icon Download slides: ecmlpkdd2011_oiwa_learning_01.pdf (1.3┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: