An Alternating Direction Method for Dual MAP LP Relaxation

author: Amir Globerson, School of Computer Science and Engineering, The Hebrew University of Jerusalem
published: Oct. 3, 2011,   recorded: September 2011,   views: 3257


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Maximum a-posteriori (MAP) estimation is an important task in many applications of probabilistic graphical models. Although finding an exact solution is generally intractable, approximations based on linear programming (LP) relaxation often provide good approximate solutions. In this paper we present an algorithm for solving the LP relaxation optimization problem. In order to overcome the lack of strict convexity, we apply an augmented Lagrangian method to the dual LP. The algorithm, based on the alternating direction method of multipliers (ADMM), is guaranteed to converge to the global optimum of the LP relaxation objective. Our experimental results show that this algorithm is competitive with other state-of-the-art algorithms for approximate MAP estimation.

See Also:

Download slides icon Download slides: ecmlpkdd2011_globerson_alternating_01.pdf (1.6┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: