Graph Evolution via Social Diffusion Processes

author: Chris Ding, Department of Computer Science and Engineering, University of Texas at Arlington
published: Oct. 3, 2011,   recorded: September 2011,   views: 2904


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We present a new stochastic process, called as Social Diffusion Process (SDP), to address the graph modeling. Based on this model, we derive a graph evolution algorithm and a series of graph-based approaches to solve machine learning problems, including clustering and semi-supervised learning. SDP can be viewed as a special case of Matthew effect, which is a general phenomenon in nature and societies. We use social event as a metaphor of the intrinsic stochastic process for broad range of data. We evaluate our approaches in a large number of frequently used datasets and compare our approaches to other state-of-the-art techniques. Results show that our algorithm outperforms the existing methods in most cases. We also applying our algorithm into the functionality analysis of microRNA and discover biologically interesting cliques. Due to the broad availability of graph-based data, our new model and algorithm potentially have applications in wide range.

See Also:

Download slides icon Download slides: ecmlpkdd2011_ding_graph_01.pdf (1.7┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: