Is there a best quality metric for graph clusters?

author: Hélio Almeida, Federal University of Minas Gerais
published: Oct. 3, 2011,   recorded: September 2011,   views: 3448
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Graph clustering, the process of discovering groups of similar vertices in a graph, is a very interesting area of study, with applications in many different scenarios. One of the most important aspects of graph clustering is the evaluation of cluster quality, which is important not only to measure the effectiveness of clustering algorithms, but also to give insights on the dynamics of relationships in a given network. Many quality evaluation metrics for graph clustering have been proposed in the literature, but there is no consensus on how do they compare to each other and how well they perform on different kinds of graphs. In this work we study five major graph clustering quality metrics in terms of their formal biases and their behavior when applied to clusters found by four implementations of classic graph clustering algorithms on five large, real world graphs. Our results show that those popular quality metrics have strong biases toward incorrectly awarding good scores to some kinds of clusters, especially seen in larger networks. They also indicate that currently used clustering algorithms and quality metrics do not behave as expected when cluster structures are different from the more traditional, clique-like ones.

See Also:

Download slides icon Download slides: ecmlpkdd2011_almeida_best_01.pdf (434.5 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: