Reconstructing Data Perturbed by Random Projections when the Mixing Matrix is Known

author: Yingpeng Sang, University of Adelaide
published: Oct. 20, 2009,   recorded: September 2009,   views: 3382

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Random Projection (RP) has drawn great interest from the research of privacy-preserving data mining due to its high efficiency and security. It was proposed in \cite{Liu} where the original data set composed of $m$ attributes, is multiplied with a mixing matrix of dimensions $k\times m (m>k)$ which is random and orthogonal on expectation, and then the $k$ series of perturbed data are released for mining purposes. To our knowledge little work has been done from the view of the attacker, to reconstruct the original data to get some sensitive information, given the data perturbed by RP and some priori knowledge, e.g. the mixing matrix, the means and variances of the original data. In the case that the attributes of the original data are mutually independent and sparse, the reconstruction can be treated as a problem of Underdetermined Independent Component Analysis (UICA), but UICA has some permutation and scaling ambiguities. In this paper we propose a reconstruction framework based on UICA and also some techniques to reduce the ambiguities. The cases that the attributes of the original data are correlated and not sparse are also common in data mining. We also propose a reconstruction method for the typical case of Multivariate Gaussian Distribution, based on the method of Maximum A Posterior (MAP). Our experiments show that our reconstructions can achieve high recovery rates, and outperform the reconstructions based on Principle Component Analysis (PCA).

See Also:

Download slides icon Download slides: ecmlpkdd09_sang_rdprpmmk_01.pdf (549.2┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 jasper, April 14, 2016 at 12:45 p.m.:

the lecture is marvelous! I love the lecturer!!!

Write your own review or comment:

make sure you have javascript enabled or clear this field: