The Sensitivity of Latent Dirichlet Allocation for Information Retrieval

author: Laurence A. F. Park, The University of Melbourne
published: Oct. 20, 2009,   recorded: September 2009,   views: 6682
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

It has been shown that the use of topic models for Information retrieval provides an increase in precision when used in the appropriate form. Latent Dirichlet Allocation (LDA) is a generative topic model that allows us to model documents using a Dirichlet prior. Using this topic model, we are able to obtain a fitted Dirichlet parameter that provides the maximum likelihood for the document set. In this article, we examine the sensitivity of LDA with respect to the Dirichlet parameter when used for Information retrieval. We compare the topic model computation times, storage requirements and retrieval precision of fitted LDA to LDA with a uniform Dirichlet prior. The results show there there is no significant benefit of using fitted LDA over the LDA with a constant Dirichlet parameter, hence showing that LDA is insensitive with respect to the Dirichlet parameter when used for Information retrieval.

See Also:

Download slides icon Download slides: ecmlpkdd09_park_sldair_01.pdf (272.1┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: