Dynamic Factor Graphs for Time Series Modeling

author: Piotr Mirowski, Courant Institute of Mathematical Sciences, New York University
published: Oct. 20, 2009,   recorded: September 2009,   views: 473
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

This article presents a method for training Dynamic Factor Graphs (DFG) with continuous latent state variables. A DFG includes factors modeling joint probabilities between hidden and observed variables, and factors modeling dynamical constraints on hidden variables. The DFG assigns a scalar energy to each configuration of hidden and observed variables. A radient-based inference procedure finds the minimum-energy state sequence for a given observation sequence. Because the factors are designed to ensure a constant partition function, they can be trained by minimizing the expected energy over training sequences with respect to the factors’ parameters. These alternated inference and parameter updates can be seen as a deterministic EM-like procedure. Using smoothing regularizers, DFGs are shown to reconstruct chaotic attractors and to separate a mixture of independent oscillatory sources perfectly. DFGs outperform the best known algorithm on the CATS competition benchmark for time series prediction. DFGs also successfully reconstruct missing motion capture data.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: