Harnessing the Strengths of Anytime Algorithms for Constant Data Streams

author: Philipp Kranen, RWTH Aachen University
published: Oct. 20, 2009,   recorded: September 2009,   views: 2501

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Anytime algorithms have been proposed for many different applications e.g. in data mining. Their strengths are the ability to first provide a result after a very short initialization and second to improve their result with additional time. Therefore, anytime algorithms have so far been used when the available processing time varies, e.g. on varying data streams. In this paper we propose to employ anytime algorithms on constant data streams, i.e. for tasks with constant time allowance. We introduce two approaches that harness the strengths of anytime algorithms on constant data streams and thereby improve the over all quality of the result with respect to the corresponding budget algorithm. We derive formulas for the expected performance gain and demonstrate the effectiveness of our novel approaches using existing anytime algorithms on benchmark data sets. The goal that was set and reached in this paper is to improve the quality of the result over that of traditional budget approaches, which are used in an abundance of stream mining applications. Using anytime classification as an example application we show for SVM, Bayes and nearest neighbor classifiers that both our novel approaches improve the classification accuracy for slow and fast data streams. The results confirm our general theoretic models and show the effectiveness of our approaches. The simple yet effective idea can be employed for any anytime algorithm along with a quality measure and motivates further research in e.g. classification confidence measures or anytime algorithms.

See Also:

Download slides icon Download slides: ecmlpkdd09_kranen_hsaacds_01.ppt (1.6┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: