Integrating Logical Reasoning and Probabilistic Chain Graphs

author: Arjen Hommersom, Radboud University Nijmegen
published: Oct. 20, 2009,   recorded: September 2009,   views: 2992

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Probabilistic logics have attracted a great deal of attention during the past few years. While logical languages have taken a central position in research on knowledge representation and automated reasoning, probabilistic graphical models with their probabilistic basis have taken up a similar position when it comes to reasoning with uncertainty. The formalism of chain graphs is increasingly seen as a natural probabilistic graphical formalism as it generalises both Bayesian networks and Markov networks, and has a semantics which allows any Bayesian network to have a unique graphical representation. At the same time, chain graphs do not support modelling and learning of relational aspects of a domain. In this paper, a new probabilistic logic, chain logic, is developed along the lines of probabilistic Horn logic. The logic leads to relational models of domains in which associational and causal knowledge are relevant and where probabilistic parameters can be learned from data.

See Also:

Download slides icon Download slides: ecmlpkdd09_hommersom_ilrpcg_01.pdf (122.6┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: