Sequence Labelling SVMs Trained in One Pass
author: Antoine Bordes,
Facebook
author: Nicolas Usunier, LIP6, Université Pierre et Marie Curie - Paris 6
author: Léon Bottou, Facebook
published: Oct. 10, 2008, recorded: September 2008, views: 4403
author: Nicolas Usunier, LIP6, Université Pierre et Marie Curie - Paris 6
author: Léon Bottou, Facebook
published: Oct. 10, 2008, recorded: September 2008, views: 4403
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
This paper proposes an online solver of the dual formulation of support vector machines for structured output spaces. We apply it to sequence labelling using the exact and greedy inference schemes. In both cases, the per-sequence training time is the same as a perceptron based on the same inference procedure, up to a small multiplicative constant. Comparing the two inference schemes, the greedy version is much faster. It is also amenable to higher order Markov assumptions and performs similarly on test. In comparison to existing algorithms, both versions match the accuracies of batch solvers that use exact inference after a single pass over the training examples.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: