Less is More: Towards Compact CNNs

author: Hao Zhou, Department of Computer Science, University of Maryland
published: Oct. 24, 2016,   recorded: October 2016,   views: 2290


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


To attain a favorable performance on large-scale datasets, convolutional neural networks (CNNs) are usually designed to have very high capacity involving millions of parameters. In this work, we aim at optimizing the number of neurons in a network, thus the number of parameters. We show that, by incorporating sparse constraints into the objective function, it is possible to decimate the number of neurons during the training stage. As a result, the number of parameters and the memory footprint of the neural network are also reduced, which is also desirable at the test time. We evaluated our method on several well-known CNN structures including AlexNet, and VGG over different datasets including ImageNet. Extensive experimental results demonstrate that our method leads to compact networks. Taking first fully connected layer as an example, our compact CNN contains only 30%30% of the original neurons without any degradation of the top-1 classification accuracy.

See Also:

Download slides icon Download slides: eccv2016_zhou_compact_cnns.pdf (1.2┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: