XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
published: Oct. 24, 2016, recorded: October 2016, views: 8555
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32x memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is only 2.9% less than the full-precision AlexNet (in top-1 measure). We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Reviews and comments:
I tried this XNOR Net Method with an numerical example,but i found out the results are having much deviation with Actual Convolution.Similiarly are we doing XNOR operation on Normalised input or Orginal input????
cara hack
Many problem
Write your own review or comment: