Joint Face Alignment and 3D Face Reconstruction

author: Feng Liu, Sichuan University
published: Oct. 24, 2016,   recorded: October 2016,   views: 47
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We present an approach to simultaneously solve the two problems of face alignment and 3D face reconstruction from an input 2D face image of arbitrary poses and expressions. The proposed method iteratively and alternately applies two sets of cascaded regressors, one for updating 2D landmarks and the other for updating reconstructed pose-expression-normalized (PEN) 3D face shape. The 3D face shape and the landmarks are correlated via a 3D-to-2D mapping matrix. In each iteration, adjustment to the landmarks is firstly estimated via a landmark regressor, and this landmark adjustment is also used to estimate 3D face shape adjustment via a shape regressor. The 3D-to-2D mapping is then computed based on the adjusted 3D face shape and 2D landmarks, and it further refines the 2D landmarks. An effective algorithm is devised to learn these regressors based on a training dataset of pairing annotated 3D face shapes and 2D face images. Compared with existing methods, the proposed method can fully automatically generate PEN 3D face shapes in real time from a single 2D face image and locate both visible and invisible 2D landmarks. Extensive experiments show that the proposed method can achieve the state-of-the-art accuracy in both face alignment and 3D face reconstruction, and benefit face recognition owing to its reconstructed PEN 3D face shapes.

See Also:

Download slides icon Download slides: eccv2016_liu_face_alignment.pdf (5.9┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: