An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem

author: Thorsten Beier, University of Heidelberg
published: Oct. 24, 2016,   recorded: October 2016,   views: 1483


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Many computer vision problems can be cast as an optimization problem whose feasible solutions are decompositions of a graph. The minimum cost lifted multicut problem is such an optimization problem. Its objective function can penalize or reward all decompositions for which any given pair of nodes are in distinct components. While this property has many potential applications, such applications are hampered by the fact that the problem is NP-hard. We propose a fusion move algorithm for computing feasible solutions, better and more efficiently than existing algorithms. We demonstrate this and applications to image segmentation, obtaining a new state of the art for a problem in biological image analysis.

See Also:

Download slides icon Download slides: eccv2016_beier_efficient_fusion_01.pdf (11.4┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: