Sliding Shapes for 3D Object Detection in Depth Images

author: Shuran Song, Department of Computer Science, Princeton University
published: Oct. 29, 2014,   recorded: September 2014,   views: 15086


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The depth information of RGB-D sensors has greatly simplified some common challenges in computer vision and enabled breakthroughs for several tasks. In this paper, we propose to use depth maps for object detection and design a 3D detector to overcome the major difficulties for recognition, namely the variations of texture, illumination, shape, viewpoint, clutter, occlusion, self-occlusion and sensor noises. We take a collection of 3D CAD models and render each CAD model from hundreds of viewpoints to obtain synthetic depth maps. For each depth rendering, we extract features from the 3D point cloud and train an Exemplar-SVM classifier. During testing and hard-negative mining, we slide a 3D detection window in 3D space. Experiment results show that our 3D detector significantly outperforms the state-of-the-art algorithms for both RGB and RGB-D images, and achieves about ×1.7 improvement on average precision compared to DPM and R-CNN. All source code and data are available online.

See Also:

Download slides icon Download slides: eccv2014_song_depth_images_01.pdf (20.0 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: