Progressive Mode-Seeking on Graphs for Sparse Feature Matching

author: Lingqiao Liu, University of Wollongong
published: Oct. 29, 2014,   recorded: September 2014,   views: 2631


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Sparse feature matching poses three challenges to graph-based methods: (1) the combinatorial nature makes the number of possible matches huge; (2) most possible matches might be outliers; (3) high computational complexity is often incurred. In this paper, to resolve these issues, we propose a simple, yet surprisingly effective approach to explore the huge matching space in order to significantly boost true matches while avoiding outliers. The key idea is to perform mode-seeking on graphs progressively based on our proposed guided graph density. We further design a density-aware sampling technique to considerably accelerate mode-seeking. Experimental study on various benchmark data sets demonstrates that our method is several orders faster than the state-of-the-art methods while achieving much higher precision and recall.

See Also:

Download slides icon Download slides: eccv2014_liu_feature_matching_01.pdf (3.1┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: