Frequency-Space Decomposition and Acquisition of Light Transport under Spatially Varying Illumination

author: Ravi Ramamoorthi, UC Berkeley
chairman: Bernt Schiele, Max Planck Institut Informatik, Max Planck Institute
chairman: David Forsyth, Department of Computer Science, University of Illinois at Urbana-Champaign
published: Nov. 12, 2012,   recorded: October 2012,   views: 3001


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We show that, under spatially varying illumination, the light transport of diffuse scenes can be decomposed into direct, near-range (subsurface scattering and local inter-reflections) and far-range transports (diffuse inter-reflections). We show that these three component transports are redundant either in the spatial or the frequency domain and can be separated using appropriate illumination patterns. We propose a novel, efficient method to sequentially separate and acquire the component transports. First, we acquire the direct transport by extending the direct-global separation technique from floodlit images to full transport matrices. Next, we separate and acquire the near-range transport by illuminating patterns sampled uniformly in the frequency domain. Finally, we acquire the far-range transport by illuminating low-frequency patterns. We show that theoretically, our acquisition method achieves the lower bound our model places on the required number of patterns. We quantify the savings in number of patterns over the brute force approach. We validate our observations and acquisition method with rendered and real examples throughout.

See Also:

Download slides icon Download slides: eccv2012_ramamoorthi_decomposition_01.pdf (1.2┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: