Reflectance and Natural Illumination from a Single Image

author: Stephen Lombardi, Drexel University
chairman: Bernt Schiele, Max Planck Institut Informatik, Max Planck Institute
chairman: David Forsyth, Department of Computer Science, University of Illinois at Urbana-Champaign
published: Nov. 12, 2012,   recorded: October 2012,   views: 338


Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography


Estimating reflectance and natural illumination from a single image of an object of known shape is a challenging task due to the ambiguities between reflectance and illumination. Although there is an inherent limitation in what can be recovered as the reflectance band-limits the illumination, explicitly estimating both is desirable for many computer vision applications. Achieving this estimation requires that we derive and impose strong constraints on both variables. We introduce a probabilistic formulation that seamlessly incorporates such constraints as priors to arrive at the maximum a posteriori estimates of reflectance and natural illumination. We begin by showing that reflectance modulates the natural illumination in a way that increases its entropy. Based on this observation, we impose a prior on the illumination that favors lower entropy while conforming to natural image statistics. We also impose a prior on the reflectance based on the directional statistics BRDF model that constrains the estimate to lie within the bounds and variability of real-world materials. Experimental results on a number of synthetic and real images show that the method is able to achieve accurate joint estimation for different combinations of materials and lighting.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: