Activity Forecasting
chairman: Michael J. Black, Max Planck Institute for Intelligent Systems, Max Planck Institute
chairman: Ivan Laptev, INRIA - The French National Institute for Research in Computer Science and Control
published: Nov. 12, 2012, recorded: October 2012, views: 8255
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
We address the task of inferring the future actions of people from noisy visual input. We denote this task activity forecasting. To achieve accurate activity forecasting, our approach models the effect of the physical environment on the choice of human actions. This is accomplished by the use of state of-the-art semantic scene understanding combined with ideas from optimal control theory. Our unified model also integrates several other key elements of activity analysis, namely, destination forecasting, sequence smoothing and transfer learning. As proof-of-concept, we focus on the domain of trajectory-based activity analysis from visual input. Experimental results demonstrate that our model accurately predicts distributions over future actions of individuals. We show how the same techniques can improve the results of tracking algorithms by leveraging information about likely goals and trajectories.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: